48 research outputs found

    Gene Expression Profile Changes After Short-activating RNA-mediated Induction of Endogenous Pluripotency Factors in Human Mesenchymal Stem Cells

    Get PDF
    It is now recognized that small noncoding RNA sequences have the ability to mediate transcriptional activation of specific target genes in human cells. Using bioinformatics analysis and functional screening, we screened short-activating RNA (saRNA) oligonucleotides designed to target the promoter regions of the pluripotency reprogramming factors, Kruppel-like factor 4 (KLF4) and c-MYC. We identified KLF4 and c-MYC promoter-targeted saRNA sequences that consistently induced increases in their respective levels of nascent mRNA and protein expression in a time- and dose-dependent manner, as compared with scrambled sequence control oligonucleotides. The functional consequences of saRNA-induced activation of each targeted reprogramming factor were then characterized by comprehensively profiling changes in gene expression by microarray analysis, which revealed significant increases in mRNA levels of their respective downstream pathway genes. Notably, the microarray profile after saRNA-mediated induction of endogenous KLF4 and c-MYC showed similar gene expression patterns for stem cell- and cell cycle-related genes as compared with lentiviral vector-mediated overexpression of exogenous KLF4 and c-MYC transgenes, while divergent gene expression patterns common to viral vector-mediated transgene delivery were also noted. The use of promoter-targeted saRNAs for the activation of pluripotency reprogramming factors could have broad implications for stem cell research

    Targeted delivery of C/EBPα -saRNA by pancreatic ductal adenocarcinoma-specific RNA aptamers inhibits tumor growth in vivo

    No full text
    The 5-year survival rate for pancreatic ductal adenocarcinoma (PDAC) remains dismal despite current chemotherapeutic agents and inhibitors of molecular targets. As the incidence of PDAC constantly increases, more effective multidrug approaches must be made. Here, we report a novel method of delivering antitumorigenic therapy in PDAC by upregulating the transcriptional factor CCAAT/enhancer-binding protein-α (C/EBPα), recognized for its antiproliferative effects. Small activating RNA (saRNA) duplexes designed to increase C/EBPα expression were linked onto PDAC-specific 2′-Fluropyrimidine RNA aptamers (2′F-RNA) - P19 and P1 for construction of a cell type–specific delivery vehicle. Both P19- and P1-C/EBPα-saRNA conjugates increased expression of C/EBPα and significantly suppressed cell proliferation. Tail vein injection of the saRNA/aptamer conjugates in PANC-1 and in gemcitabine-resistant AsPC-1 mouse-xenografts led to reduced tumor size with no observed toxicity. To exploit the specificity of the P19/P1 aptamers for PDAC cells, we also assessed if conjugation with Cy3 would allow it to be used as a diagnostic tool on archival human pancreatic duodenectomy tissue sections. Scoring pattern from 72 patients suggested a positive correlation between high fluorescent signal in the high mortality patient groups. We propose a novel aptamer-based strategy for delivery of targeted molecular therapy in advanced PDAC where current modalities fail

    Comparing Artificial Neural Networks, General Linear Models and Support Vector Machines in Building Predictive Models for Small Interfering RNAs

    Get PDF
    Exogenous short interfering RNAs (siRNAs) induce a gene knockdown effect in cells by interacting with naturally occurring RNA processing machinery. However not all siRNAs induce this effect equally. Several heterogeneous kinds of machine learning techniques and feature sets have been applied to modeling siRNAs and their abilities to induce knockdown. There is some growing agreement to which techniques produce maximally predictive models and yet there is little consensus for methods to compare among predictive models. Also, there are few comparative studies that address what the effect of choosing learning technique, feature set or cross validation approach has on finding and discriminating among predictive models.Three learning techniques were used to develop predictive models for effective siRNA sequences including Artificial Neural Networks (ANNs), General Linear Models (GLMs) and Support Vector Machines (SVMs). Five feature mapping methods were also used to generate models of siRNA activities. The 2 factors of learning technique and feature mapping were evaluated by complete 3x5 factorial ANOVA. Overall, both learning techniques and feature mapping contributed significantly to the observed variance in predictive models, but to differing degrees for precision and accuracy as well as across different kinds and levels of model cross-validation.The methods presented here provide a robust statistical framework to compare among models developed under distinct learning techniques and feature sets for siRNAs. Further comparisons among current or future modeling approaches should apply these or other suitable statistically equivalent methods to critically evaluate the performance of proposed models. ANN and GLM techniques tend to be more sensitive to the inclusion of noisy features, but the SVM technique is more robust under large numbers of features for measures of model precision and accuracy. Features found to result in maximally predictive models are not consistent across learning techniques, suggesting care should be taken in the interpretation of feature relevance. In the models developed here, there are statistically differentiable combinations of learning techniques and feature mapping methods where the SVM technique under a specific combination of features significantly outperforms all the best combinations of features within the ANN and GLM techniques

    Quantitative Prediction of miRNA-mRNA Interaction Based on Equilibrium Concentrations

    Get PDF
    MicroRNAs (miRNAs) suppress gene expression by forming a duplex with a target messenger RNA (mRNA), blocking translation or initiating cleavage. Computational approaches have proven valuable for predicting which mRNAs can be targeted by a given miRNA, but currently available prediction methods do not address the extent of duplex formation under physiological conditions. Some miRNAs can at low concentrations bind to target mRNAs, whereas others are unlikely to bind within a physiologically relevant concentration range. Here we present a novel approach in which we find potential target sites on mRNA that minimize the calculated free energy of duplex formation, compute the free energy change involved in unfolding these sites, and use these energies to estimate the extent of duplex formation at specified initial concentrations of both species. We compare our predictions to experimentally confirmed miRNA-mRNA interactions (and non-interactions) in Drosophila melanogaster and in human. Although our method does not predict whether the targeted mRNA is degraded and/or its translation to protein inhibited, our quantitative estimates generally track experimentally supported results, indicating that this approach can be used to predict whether an interaction occurs at specified concentrations. Our approach offers a more-quantitative understanding of post-translational regulation in different cell types, tissues, and developmental conditions

    MicroTar: predicting microRNA targets from RNA duplexes

    Get PDF
    BACKGROUND: The accurate prediction of a comprehensive set of messenger RNAs (targets) regulated by animal microRNAs (miRNAs) remains an open problem. In particular, the prediction of targets that do not possess evolutionarily conserved complementarity to their miRNA regulators is not adequately addressed by current tools. RESULTS: We have developed MicroTar, an animal miRNA target prediction tool based on miRNA-target complementarity and thermodynamic data. The algorithm uses predicted free energies of unbound mRNA and putative mRNA-miRNA heterodimers, implicitly addressing the accessibility of the mRNA 3' untranslated region. MicroTar does not rely on evolutionary conservation to discern functional targets, and is able to predict both conserved and non-conserved targets. MicroTar source code and predictions are accessible at , where both serial and parallel versions of the program can be downloaded under an open-source licence. CONCLUSION: MicroTar achieves better sensitivity than previously reported predictions when tested on three distinct datasets of experimentally-verified miRNA-target interactions in C. elegans, Drosophila, and mouse

    A ChIP-Seq Benchmark Shows That Sequence Conservation Mainly Improves Detection of Strong Transcription Factor Binding Sites

    Get PDF
    Transcription factors are important controllers of gene expression and mapping transcription factor binding sites (TFBS) is key to inferring transcription factor regulatory networks. Several methods for predicting TFBS exist, but there are no standard genome-wide datasets on which to assess the performance of these prediction methods. Also, it is believed that information about sequence conservation across different genomes can generally improve accuracy of motif-based predictors, but it is not clear under what circumstances use of conservation is most beneficial.Here we use published ChIP-seq data and an improved peak detection method to create comprehensive benchmark datasets for prediction methods which use known descriptors or binding motifs to detect TFBS in genomic sequences. We use this benchmark to assess the performance of five different prediction methods and find that the methods that use information about sequence conservation generally perform better than simpler motif-scanning methods. The difference is greater on high-affinity peaks and when using short and information-poor motifs. However, if the motifs are specific and information-rich, we find that simple motif-scanning methods can perform better than conservation-based methods.Our benchmark provides a comprehensive test that can be used to rank the relative performance of transcription factor binding site prediction methods. Moreover, our results show that, contrary to previous reports, sequence conservation is better suited for predicting strong than weak transcription factor binding sites

    Improving model predictions for RNA interference activities that use support vector machine regression by combining and filtering features

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>RNA interference (RNAi) is a naturally occurring phenomenon that results in the suppression of a target RNA sequence utilizing a variety of possible methods and pathways. To dissect the factors that result in effective siRNA sequences a regression kernel Support Vector Machine (SVM) approach was used to quantitatively model RNA interference activities.</p> <p>Results</p> <p>Eight overall feature mapping methods were compared in their abilities to build SVM regression models that predict published siRNA activities. The primary factors in predictive SVM models are position specific nucleotide compositions. The secondary factors are position independent sequence motifs (<it>N</it>-grams) and guide strand to passenger strand sequence thermodynamics. Finally, the factors that are least contributory but are still predictive of efficacy are measures of intramolecular guide strand secondary structure and target strand secondary structure. Of these, the site of the 5' most base of the guide strand is the most informative.</p> <p>Conclusion</p> <p>The capacity of specific feature mapping methods and their ability to build predictive models of RNAi activity suggests a relative biological importance of these features. Some feature mapping methods are more informative in building predictive models and overall <it>t</it>-test filtering provides a method to remove some noisy features or make comparisons among datasets. Together, these features can yield predictive SVM regression models with increased predictive accuracy between predicted and observed activities both within datasets by cross validation, and between independently collected RNAi activity datasets. Feature filtering to remove features should be approached carefully in that it is possible to reduce feature set size without substantially reducing predictive models, but the features retained in the candidate models become increasingly distinct. Software to perform feature prediction and SVM training and testing on nucleic acid sequences can be found at the following site: <url>ftp://scitoolsftp.idtdna.com/SEQ2SVM/</url>.</p

    Transcriptome-Wide Prediction of miRNA Targets in Human and Mouse Using FASTH

    Get PDF
    Transcriptional regulation by microRNAs (miRNAs) involves complementary base-pairing at target sites on mRNAs, yielding complex secondary structures. Here we introduce an efficient computational approach and software (FASTH) for genome-scale prediction of miRNA target sites based on minimizing the free energy of duplex structure. We apply our approach to identify miRNA target sites in the human and mouse transcriptomes. Our results show that short sequence motifs in the 5′ end of miRNAs frequently match mRNAs perfectly, not only at validated target sites but additionally at many other, energetically favourable sites. High-quality matching regions are abundant and occur at similar frequencies in all mRNA regions, not only the 3′UTR. About one-third of potential miRNA target sites are reassigned to different mRNA regions, or gained or lost altogether, among different transcript isoforms from the same gene. Many potential miRNA target sites predicted in human are not found in mouse, and vice-versa, but among those that do occur in orthologous human and mouse mRNAs most are situated in corresponding mRNA regions, i.e. these sites are themselves orthologous. Using a luciferase assay in HEK293 cells, we validate four of six predicted miRNA-mRNA interactions, with the mRNA level reduced by an average of 73%. We demonstrate that a thermodynamically based computational approach to prediction of miRNA binding sites on mRNAs can be scaled to analyse complete mammalian transcriptome datasets. These results confirm and extend the scope of miRNA-mediated species- and transcript-specific regulation in different cell types, tissues and developmental conditions
    corecore